Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Experimental Procedure for Simulating an SC03 Emissions Test with Air Conditioner On

2004-03-08
2004-01-0594
In a continuing effort to include real-world emissions in regulatory testing, the USEPA has included air conditioning operation as part of the Supplemental Federal Test Procedure (SFTP). Known as the SC03, these tests require automobile manufacturers to construct and maintain expensive environmental chambers. However, the regulations make allowances for a simulation test, if one can be shown to demonstrate correlation with the SFTP results. We present the results from an experiment on a 1998 Ford sedan, which simulates the heat load of a full environmental chamber. Moreover, the test procedure is simpler and more cost effective. The process essentially involves heating the condenser of the air conditioning system by using the heat of the engine, rather than heating the entire vehicle. The results indicate that if the head pressure is used as a feedback signal to the radiator fan, the load generated by a full environmental chamber can be duplicated.
Technical Paper

An Indirect Occupancy Detection and Occupant Counting System Using Motion Sensors

2017-03-28
2017-01-1442
This paper proposes a low-cost but indirect method for occupancy detection and occupant counting purpose in current and future automotive systems. It can serve as either a way to determine the number of occupants riding inside a car or a way to complement the other devices in determining the occupancy. The proposed method is useful for various mobility applications including car rental, fleet management, taxi, car sharing, occupancy in autonomous vehicles, etc. It utilizes existing on-board motion sensor measurements, such as those used in the vehicle stability control function, together with door open and closed status. The vehicle’s motion signature in response to an occupant’s boarding and alighting is first extracted from the motion sensors that measure the responses of the vehicle body. Then the weights of the occupants are estimated by fitting the vehicle responses with a transient vehicle dynamics model.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Technical Paper

An Optimization Method for Selecting Physical Modes in Poly-Reference Modal Analysis of Vehicle Systems

1999-05-17
1999-01-1782
Distinguishing physical modes from mathematical modes in the modal analysis of complex systems, such as full vehicle structures, is a difficult and time-consuming process. The major tools frequently used are stabilization diagrams, mode indicator functions, or modal participation factors. When closely spaced modes are to be identified, the stabilization diagrams and mode indicator functions are no longer effective. Even the reciprocities of mode shapes and modal participation factors cannot be well satisfied to indicate whether a mode is a physical one, when measurement errors are large. To overcome these difficulties, an optimization procedure is developed, whereby physical modes can be sorted out in a given frequency range while the error between measured and synthesized frequency responses is minimized. An optimal subset selection algorithm is used in this procedure.
Journal Article

An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions

2013-04-08
2013-01-1635
This paper provides an overview of the effects of blending ethanol with gasoline for use in spark ignition engines. The overview is written from the perspective of considering a future ethanol-gasoline blend for use in vehicles that have been designed to accommodate such a fuel. Therefore discussion of the effects of ethanol-gasoline blends on older legacy vehicles is not included. As background, highlights of future emissions regulations are discussed. The effects on fuel properties of blending ethanol and gasoline are described. The substantial increase in knock resistance and full load performance associated with the addition of ethanol to gasoline is illustrated with example data. Aspects of fuel efficiency enabled by increased ethanol content are reviewed, including downsizing and downspeeding opportunities, increased compression ratio, fundamental effects associated with ethanol combustion, and reduced enrichment requirement at high speed/high load conditions.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Journal Article

Analytic Engine and Transmission Models for Vehicle Fuel Consumption Estimation

2015-04-14
2015-01-0981
A normalized analytical vehicle fuel consumption model is developed based on an input/output description of engine fuel consumption and transmission losses. Engine properties and fuel consumption are expressed in mean effective pressure (mep) units, while vehicle road load, acceleration and grade are expressed in acceleration units. The engine model concentrates on the low rpm operation. The fuel mep is approximately independent of speed and is a linear function of load, as long as the engine is not knock limited. A linear, two-constant engine model then covers the speed/load range of interest. The model constants are a function of well-known engine properties. Examples are discussed for naturally aspirated and turbocharged SI engines and for Diesel engines. A similar model is developed for the transmission where the offset reflects the spin and pump losses, and the slope is the gear efficiency.
Technical Paper

Analytical Predictions for the Chain Drive System Resonance

2007-04-16
2007-01-0112
The chain link and sprocket tooth impact during a meshing has been identified as the most significant noise source in a chain drive system. This paper first presents the theoretical derivation of the chain drive natural frequencies and mode shapes using the equations of motion from a stationary undamped chain drive system. The theoretical derivation shows the existence of three types of chain resonances, namely the transverse strand resonance, the longitudinal chain sprocket coupled resonance and the longitudinal chain stress wave type resonance. The chain-sprocket meshing noise is amplified when the chain sprocket meshing frequency corresponds to any one of the above mentioned chain drive system resonances. These theoretical results are then validated by a chain drive system CAE model using ABAQUS to identify the chain drive system resonances.
Technical Paper

Application of Two Sub-Models Relative to Chemical-Kinetics-Based Turbulent Pre-Mixed Combustion Modeling Approach on the Simulation of Burn Rate and Emissions of Spark Ignition Engines

2017-10-08
2017-01-2202
This work presents an application of two sub-models relative to chemical-kinetics-based turbulent pre-mixed combustion modeling approach on the simulation of burn rate and emissions of spark ignition engines. In present paper, the justification of turbulent pre-mixed combustion modeling directly based on chemical kinetics plus a turbulence model is given briefly. Two sub-models relative to this kind of pre-mixed combustion modeling approach are described generally, including a practical PRF (primary reference fuel) chemical kinetic mechanism which can correctly capture the laminar flame speed under a wide range of Ford SI (spark ignition) engines/operating conditions, and an advanced spark plug ignition model which has been developed by Ford recently.
Technical Paper

Application of a New Turbulent Flame Speed Combustion Model on Burn Rate Simulation of Spark Ignition Engines

2016-04-05
2016-01-0588
This work presents turbulent premixed combustion modeling in spark ignition engines using G-equation based turbulent combustion model. In present study, a turbulent flame speed expression proposed and validated in recent years by two co-authors of this paper is applied to the combustion simulation of spark ignition engines. This turbulent flame speed expression has no adjustable parameters and its constants are closely tied to the physics of scalar mixing at small scales. Based on this flame speed expression, a minor modification is introduced in this paper considering the fact that the turbulent flame speed changes to laminar flame speed if there is no turbulence. This modified turbulent flame speed expression is implemented into Ford in-house CFD code MESIM (multi-dimensional engine simulation), and is validated extensively.
Technical Paper

Approximating Engine Tailpipe Orifice Noise Sound Quality using a Surge Tank and In-Duct Measurements

2003-05-05
2003-01-1641
Because of the need to safely vent exhaust gases, most engine dynamometer facilities are not well suited to measuring engine exhaust orifice noise. Depending on the location of the dyno facility within the building, the exhaust system may need to be extended in order to properly vent the exhaust fumes. This additional ducting changes the acoustic modes of the exhaust system which will change the measured orifice noise. Duct additions downstream of the original orifice location also alter the termination impedance such that in-duct pressure measurements with and without the extended exhaust system can vary significantly. In order to minimize the effect of the building's exhaust system on the desired engine exhaust system measurements, the present approach terminates the engine exhaust into a large enclosed volume or surge tank before venting the gases into the building's ventilation system.
Technical Paper

Arttest – a New Test Environment for Model-Based Software Development

2017-03-28
2017-01-0004
Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
Technical Paper

Assessment Tool Development for Rollover CAE Signals Evaluation

2007-04-16
2007-01-0681
An assessment tool was developed for rollover CAE signals evaluation to assess primarily the qualities of CAE generated sensor waveforms. This is a key tool to be used to assess CAE results as to whether they can be used for algorithm calibration and identify areas for further improvement of sensor. Currently, the method is developed using error estimates on mean, peak and standard deviation. More metrics, if necessary, can be added to the assessment tool in the future. This method has been applied to various simulated signals for laboratory-based rollover test modes with rigid-body-based MADYDO models.
Technical Paper

Automated Migration of Legacy Functions and Algorithms to Model Based Design

2008-04-14
2008-01-0747
Automotive companies have invested a fortune over the last three decades developing real-time embedded control strategies and software to achieve desired functions and performance attributes. Over time, these control algorithms have matured and achieved optimum behavior. The companies have vast repositories of embedded software for a variety of control features that have been validated and deployed for production. These software functions can be reused with minimal modifications for future applications. The companies are also constantly looking for new ways to improve the productivity of the development process that may translate into lower development costs, higher quality and faster time-to-market. All companies are currently embracing Model Based Design (MBD) tools to help achieve the gains in productivity. The most cost effective approach would be to reuse the available legacy software for carry-over features while developing new features with the new MBD tools.
Technical Paper

Automotive A/C Servicing – Refrigerant Flushing of a Failed A/C System

2017-03-28
2017-01-0167
The failure of an A/C system often results in the introduction of contaminants to the A/C system. The sources of the contaminants include debris from damaged components and debris from the surrounding environment. Returning the A/C system to service requires the removal of these contaminants from any reused components. The recommended approach to cleaning contaminated components and systems is to flush with a solvent flushing machine. Previous internal studies have concluded that solvent flushing will remove all contaminants, restoring component and system performance. Many commercial refrigerant recovery and recharge machines include a refrigerant “flush” feature which can flush oil from the system and components with the systems refrigerant. The effectiveness of using the “flush” feature of a refrigerant recovery and recharge machine with an added in-line filter to remove contaminants is investigated.
Technical Paper

Automotive Audio System Development

2005-11-22
2005-01-4053
Vehicle audio system performance is an important attribute for final costumers. In this sense, its evaluation is an important aspect for selecting the design and validation process for automobile manufacturers. Usually the vehicle audio system performance is evaluated only by subjective judgment. However the design requirements demands objective measurements to set targets establish benchmarking and apply refinements to the design. Thus, in order to evaluate and improve sound system performance, it has been established a subjective evaluation process on reproducing and analyzing customer perception in a more reliable way. To support this information, objective evaluations have been used based on total harmonic distortion (THD), normalized frequency response (NFR) methods and spectrogram, which have been shown as straight and fast objective tools. Reinforcing the objective evaluations, qualitative time-frequency spectrogram has been used.
Technical Paper

Automotive Manufacturing Task Analysis: An Integrated Approach

2008-06-17
2008-01-1897
Automotive manufacturing presents unique challenges for ergonomic analysis. The variety of tasks and frequencies are typically not seen in other industries. Moving these challenges into the realm of digital human modeling poses new challenges and offers the opportunity to create and enhance tools brought over from the traditional reactive approach. Chiang et al. (2006) documented an enhancement to the Siemen's Jack Static Strength Prediction tool. This paper will document further enhancements to the ErgoSolver (formerly known as the Ford Static Strength Prediction Solver).
Technical Paper

Automotive Refrigerant System Induced Evaporator Hoot

2005-05-16
2005-01-2509
The automotive refrigerant systems can occasionally exhibit a transient hoot/whistle type noise under certain operating conditions. High pressure/velocity refrigerant flow through an evaporator core can readily excite the inherent acoustical and/or structural modes, resulting in audible transient tones. This condition if present can be experienced while driving away from a short stop and can last 2 to 10 seconds. The ambient conditions suitable for creating this noise are - moderate/high air-conditioning (A/C) load during days at 85-95° F temperatures with high humidity. Possible noise generating mechanisms have been discussed in earlier publications and our findings during this study indicate that they are excited by the high velocity superheated refrigerant vapor flow through the evaporator core plates. Examples of this transient noise and its spectral characteristics are presented to characterize this refrigerant system induced issue.
Technical Paper

Brake Squeal DOE Using Nonlinear Transient Analysis

1999-05-18
1999-01-1737
To reduce warranty cost due to brake squeal and provide guidance for brake design, it is important to understand the contributions of key brake design parameters to brake noise. In this paper, a new technique, which employs the nonlinear transient finite element method as well as Taguchi method, is proposed as a design tool for improving the quality of brake systems. This DOE technique has been implemented to a car program. The final results identified the major parameters associated with the brake noise and also led to an optimal design by selecting appropriate levels of those parameters.
Journal Article

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

2017-03-28
2017-01-1316
A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
X